
Dynamic macro scale traffic flow optimisation using
crowd-sourced urban movement data

Laurens Arp
Leiden Institute for Advanced Computer Science

Leiden University
Leiden, Netherlands

l.r.arp@umail.leidenuniv.nl

Daniela Gawehns
Leiden Institute for Advanced Computer Science

Leiden University
Leiden, Netherlands

d.gawehns@liacs.leidenuniv.nl

Dyon van Vreumingen
Leiden Institute for Advanced Computer Science

Leiden University
Leiden, Netherlands

d.van.vreumingen@umail.leidenuniv.nl

Mitra Baratchi
Leiden Institute for Advanced Computer Science

Leiden University
Leiden, Netherlands

m.baratchi@liacs.leidenuniv.nl

Abstract—Urban movement data as collected by location-based
social networks provides valuable information about routes and
specific roads that people are likely to drive on. This allows
us to pinpoint roads that occur in many routes and are thus
sensitive to congestion. Redistributing some of the traffic to
avoid unnecessary use of these roads could be a key factor
in improving traffic flow. Many of the previously proposed
approaches to combat congestion are either static (e.g. a city
tax) or do not incorporate any movement data and hence ignore
how citizens use the infrastructure. In this work, we present
a method to redistribute traffic through the introduction of
externally imposed variable costs to each road segment, assuming
that all drivers seek to drive the cheapest route. We propose using
a metaheuristic optimisation approach to minimise total travel
times by optimising a set of road-specific variable cost parameters,
which are used as input for an objective function based on
Greenshields traffic flow theory. We evaluate the performance of
this approach within the context of a case study on the city centre
of Tokyo. An optimisation scenario was defined for this city using
public spatial road network data, and movement data acquired
from Foursquare. Experimental results on this case study show
that, depending on the amount of cars on the road network, our
proposed method has the potential to achieve an improvement
between 1.35% (437 hours for 112,985 drivers) and 13.15% (925
hours for 31,584 drivers) of total travel time, compared to that
of a currently operational road network configuration with no
imposed variable costs.

Keywords-mobility modelling, traffic flow optimisation, meta-
heuristic optimisation, urban movements, location-based social
networks

I. INTRODUCTION

Even though extensive road networks have been developed
to satisfy the high demand for vehicular transportation, over-
occupancy of roads still occurs on a daily basis, causing traffic
jams which hurt the environment, the economy, and the drivers’
moods. Finding a solution to traffic congestion is a challenging
task that has occupied many in the past century. After all, traffic
dynamics are difficult to predict, due to the complex fluctuations
in traffic demand, both spatially and temporally. This makes

it hard to devise a protocol for traffic flow redistribution that
works well in varying conditions.

To date, various approaches have been proposed to alleviate
congestion in some way [14]. However, these methods tend
to be either static, data-independent protocols, micro-scale
solutions (on the level of individual roads) or primarily driven
by theoretical models.

In this paper, which is an extension of our paper for the
Future Cities Challenge at Netmob [2], we propose a data-
driven method for traffic redistribution that seeks to shift traffic
situation away from a state where each driver chooses the
fastest or shortest route (thus causing congestion on roads
that occur in many shortest routes), towards a system optimal
equilibrium, as coined by Wardrop [23], where the total travel
time for all drivers is minimised. By introducing externally
imposed variable costs (e.g. tolls, or any other financial or
non-financial method a policy-maker might deploy) on each
road, we aim to discourage drivers from all taking the same
congested roads. This approach assumes that, on average, each
driver is willing to take the cheapest route from their point of
departure to the destination, where the total costs to drive a
route depend both on the distance travelled, through a spatial
cost, and the imposed variable costs encountered along the
route. We would like to point out that this variable cost can be
negative and might be implemented within a rewards system
where drivers receive a monetary or non-monetary reward (e.g.,
preferential treatment when charging electric cars) for using
less congested routes.

Available data collected from traditional traffic sensing
equipment (e.g. inductive loop detectors) is not suitable for
proposing such a system as these sources can only provide
an aggregate number of the cars passing a spatial point
without capturing necessary network-level information needed
for dynamic flow optimisation. New sources of urban movement
data (those collected from floating cars, mobile phones, and
location-based social networks) can help infer more about



how people are using the road network, where the origin and
destinations of their movements are, or where bottlenecks
are being formed. Therefore, our objective in this paper is
to propose a dynamic, macro-scale (i.e., road network level)
approach to address traffic congestion by exploiting crowd-
sourced urban movement datasets. In this sense, dynamic means
that a solution can be adapted to new incoming movement data
reflecting the traffic flows with relative ease. More specifically,
our contributions in this paper are the following.
• We propose a data-driven method for traffic redistribution

fuelled by metaheuristic optimisation.
• We test the effect of our proposed approach on the case

of the city centre of Tokyo, using real movement data
acquired as check-in records from Foursquare, a location-
based social network [6].

• We evaluate this method by comparing it to the case where
no optimisation has been applied. We show the amount of
reduction achieved in the total amount of time spent on
the road. Furthermore, we analyse this approach in terms
of its fairness and the extent to which individual drivers
are affected by the solution.1

II. RELATED WORK

The objective of combatting traffic congestion by altering
road network setups has been addressed in a large body of
work. The use of road pricing as a means to achieve this goal is
a prevalent approach [12], [22], [25], [26]. In this context, the
marginal cost of congestion is a frequently employed measure
to assess optimal road pricing. A key difference between these
approaches and our work is that the previously proposed road
pricing policies are fixed (e.g. to charge a fee within a certain
radius of the city centre) instead of being a dynamic cost-reward
strategy, and do not follow from an optimisation procedure
based on actual movement data.
Studies using dynamic movement data, such as floating car
data (FCD), have been reported. Gühnemann et al. [11] report
on the use of FCD generated by taxis to predict traffic flow
and monitor NOx emissions. Similar work was published by
Altintasi et al. [1] who show detection of traffic flow patterns
extracted from corporate provided FCD. Lastly, the work of
Xin et al. [24] is a field application of active traffic flow
management based on a combination of toll detector and traffic
sensor data. Movement data has also been used in the analysis
of various aspects of urban dynamics such as visualisation
and exploratory data analysis of taxi movements [5] or district
classification [15]. From these works, it becomes apparent
that the use of dynamic movement data is fruitful for traffic
monitoring and management. Our work differs from these
publications in that we adopt crowd-sourced, social network
data instead of floating car data as a means to predict urban
movements for traffic optimisation.

Approaches for optimising road networks and traffic flow
from different viewpoints, without movement data and unrelated

1The code is available at https://github.com/LaurensArp/traffic flow
optimisation

to cost-reward policies, include the development of intelligent
traffic light systems [17], [24], metaheuristic optimisation
of road improvements [7] and optimisation of road graph
architectures [21]. A more exhaustive list of methods is
provided by Kumar Shukla and Agrawal [14].

In this work, we explore the use of optimisation algorithms
in proposing a dynamic cost-reward mechanism using actual
movement data.

III. PROBLEM STATEMENT

The problem of optimising traffic flow through adaptive
road pricing has two phases: (i) predicting congestion and (ii)
determining the optimal pricing strategy.

In the first phase of the problem, we need to estimate
congestion in a road network, as this is the underlying cause
of high total travel time when all drivers follow the cheapest
routes from their origins to their destinations. To determine
traffic demand, our approach requires a location dataset DL and
a dataset DM of vehicular movements between locations in DL,
with the following properties. DL should consist of locations in
the area of interest described by spatial information in terms of
GPS coordinates. The movement set DM should contain origin-
destination-frequency tuples (Ak, Bk, Nk) with Ak ∈ DL the
origin locations, Bk ∈ DL the destination locations, and Nk the
corresponding recorded frequencies of the specific movements
from Ak to Bk. Given DL and DM in the required form, we
are interested in a figure directly related to traffic congestion,
namely the total vehicular travel time Ttot on the road network
expressed as

Ttot =

|DM |∑
k=1

T (Rk)Nk. (1)

Here, Rk is the route we expect a driver going from origin Ak

to destination Bk, and T (Rk) is the time needed to drive this
route (more details are given in Section IV). The assumption
that each driver with the same origin and destination will drive
the same route allows us to write the travel time contribution
from each entry k in DM as the product of the route travel
time T (Rk) and the frequency Nk.

As mentioned in the introduction, we base our research on
the premise that route choice behaviour, and thereby overall
traffic flow, may be influenced by externally imposed variable
costs. As such, in the second phase of the problem, we seek to
establish a relationship between these costs and the total travel
time, and then optimise the cost parameters for redistributing
traffic in order to achieve minimal total travel time. The
complete methods for determining traffic flow and addressing
the inherent optimisation problem are set out in detail in the
next section.

IV. METHODS

In this section, we discuss our proposed methodology to
address the two facets of the traffic redistribution problem. First,
we explain our model for predicting driven routes (Section
IV-A1) based on variable costs, and the model for predicting



the expected total travel time (Subsection IV-A3). Second, in
Subsection IV-B, we discuss how to optimise the variable costs
for minimal total travel time.

A. Traffic flow estimation

1) Road network and routing model: The first step towards
prediction and minimisation of congestion is to represent the
physical road network as a planar graph G that has road
segments for edges, which may be traversed in order to travel
from an origin to a destination. Specifically, the graph is a
tuple G = (V,E,D) with V the node set, E the edge set and
D the set of Haversine lengths of all edges. The node set V
contains intersections in the road network, as well as nodes
for the origin and destination locations in DL.

We then introduce, for each road segment (i, j) ∈ E in the
graph, an overall cost that a driver needs to pay to traverse
this segment. This overall cost is further composed of two
partial costs: (i) a variable cost, denoted pij , and (ii) a spatial
cost. We want to point out that the variable cost parameter
can be negative (i.e. it can become a reward). This will not
change the further modelling process but allows for a flexible
implementation of the suggested traffic flow management. All
variable cost parameters collectively form the variable cost
matrix P which we seek to optimise for minimum congestion.
The spatial cost, then, is an immutable base cost for travelling
from node i to j which is linearly dependent on the length dij
of the segment by a factor β. This spatial cost is intended as a
stable upfront estimate of the travel effort that is independent
of expected travel times, which may vary throughout the
process. After all, in reality, drivers tend to take routes of
minimal travel effort (i.e. shortest distance, shortest time or
least fuel consuming), especially in the absence of externally
imposed costs. Since movement data is generally aggregated
into frequency numbers, and is not provided on an individual
level for anonymity reasons, we take β to be equal for all
drivers. Put together, the total cost for a driver to travel via
a route, which is a connected set of segments R = {(i, j)}
from some origin to a destination, is given by the sum of the
individual segment costs occurring on the route:

cost(R) =
∑

(i,j)∈R

βdij + pij . (2)

For the estimation of traffic flow, we assume that all drivers
are selfish and seek to drive the route which incurs the lowest
total cost. These routes can be found using a weighted shortest
path algorithm. Note that if pij = 0 on all edges, each driver
will drive the route of lowest spatial cost, which is exactly
the shortest route. From the cheapest routes, which are jointed
collections of segments, and the frequency numbers Nk, we
can predict the vehicle count nij on each segment, from which
the degree of congestion is computed.

2) Clustering: We modify the travel data by selecting the
locations occurring in the C most popular (i.e. frequent) routes,
and cluster all other locations together with their nearest
neighbour (by Haversine distance) in the set of most popular
locations. The routes are clustered accordingly, going between

location clusters instead of individual locations. This is done in
order to substantially reduce the number of routes and therewith
the computational complexity of the problem, accepting a
decrease in accuracy in return for higher efficiency. More
precisely, we obtain a best-case multiplicative complexity
reduction of Ω(C2/|V |2) on the routing calculation, averaged
over all possible choices of cluster points (i.e., most popular
locations). This can be seen as follows. For a random clustering,
each cluster contains on average |V |/C points, and the travel
data can contain at most |V |2/C2 route records between two
such clusters (one for each point pair). When all points in
a cluster are combined into one, all route records between
points from two clusters are merged into a single record,
thus reducing execution time multiplicatively by C2/|V |2.
Furthermore, routes within a cluster are ignored, and the
complexity gain from this scales similarly. As these are best-
case gains, we have the lower bound given above. The upper
bound is 1, since the data might contain records only for
precisely those vertices which were chosen as cluster points.

We define the cluster number C by

C = N
/
d̄ρcl (3)

with ρc the critical density, l the number of lanes on each road
segment and d̄ is the average road segment length (Subsection
V-C). The idea behind this definition is that a single movement
cluster should not place more vehicles on a road segment than
its average critical occupancy, in order to prevent congestion
from a single cluster, which is difficult to alleviate through
redistribution.

3) Congestion model: For our congestion model, we adopt
Greenshields traffic theory [9] as the means to predict traffic
flow on each road segment. The Greenshields model is an
elegantly simple yet powerful model for describing traffic
dynamics in a macroscopic way, fitting the aim of the paper.
It considers traffic in terms of the macroscopic variables flow
f (vehicles passing by per unit time) and density ρ (vehicles
present per unit road length). Despite its simplicity, the model
has been shown to be surprisingly accurate and compatible with
field studies [16]. Furthermore, it allows us to extract average
travel times from the presence of vehicles, as is discussed
below. For these reasons, we deemed this theory to be an
appropriate choice for our congestion model.

The theory assumes that the flow of traffic on a road segment
is fully described by a fundamental traffic flow curve that
directly relates flow and density (see Figure 1). In this curve,
there exists a maximum density ρm that the road can support,
beyond which the total flow is taken to be zero. Furthermore,
there is a critical density ρc at which the flow reaches its
maximum value: f(ρc) = fm. Naturally, f(0) = 0, as no flow
exists when no cars are present.

A basic curve that fits this description, which was originally
proposed by Greenshields, is a concave quadratic function,
with zero flow at ρ > ρm. We take this function to be

f(ρ) =
fm
ρ2c

max
(
0, ρ[2ρc − ρ]

)
, (4)



where we note that, since f is quadratic in ρ, ρm = 2ρc.
The maximum flow is directly related to the critical density;
assuming that the traffic is able to drive at the maximum
allowed speed vm when the density is at its critical point, we
set fm = ρcvm.

From this density-flow dependence, we can extract the space
mean speed v(ρ), the average speed of all vehicles on the road
segment, given by [9]

v(ρ) = max
(
vjam, min[vm, f(ρ)/ρ]

)
, (5)

where again the maximum speed enters the relation, this time
as a bound on the space mean speed. Finally, the space mean
travel time t(ρ) on the segment, taken to have length d, is
computed as

t(ρ) =
d

v(ρ)
. (6)

Note the introduction of a jam velocity vjam, which is a slight
deviation from the original Greenshields model. The reason for
this addition is that the Greenshields flow curve tends to break
down close to the maximum density, as the traffic undergoes a
phase transition into a jammed state [13]. After all, following
the flow curve up to zero flow and thus zero velocity would
lead to infinite travel times. As field observations show average
speeds of approximately 15km/h at the phase transition [10],
we chose vjam = 15km/h to be a lower bound on the velocity
function.

From the expected number of vehicles nij on each road
segment, we obtain the segment density as ρij = nij/dij . For
multi-lane roads, we divide this number by the number of lanes.
By inserting the segment density into the density-time relation
described above (Equation 6), we find the space mean time tij
spent on the segment. The collection of these segment space
mean travel times then leads to the definition of the objective
function for optimisation by a metaheuristic algorithm.

B. Parameter optimisation

1) Objective function: The objective function computes the
measure obj(P), which reflects the extent to which the system

Fig. 1. A Greenshields fundamental traffic flow diagram. Below
a critical density ρc, traffic flows freely and traffic flow f
increases with ρ. At densities beyond ρc, traffic becomes
congested and traffic flow decreases.

Algorithm 1. Routine for computing the objective
function for a given variable cost matrix P.

Data: road graph G = (V,E,D) with node set V inferred
from location data DV , E and D inferred from road
network data;
movement data DM ;
spatial cost factor β

Input: variable cost matrix P
Result: objective function value obj(P)

Initialise nij ← 0, tij ← 0, ρij ← 0 for all (i, j) ∈ E

// Compute predicted vehicle counts nij on each segment
forall origin-destination-freq. tuples (Ak, Bk, Nk) in DM do

Find cheapest route Rk from Ak to Bk according to β
and P using weighted shortest-path algorithm

forall (i, j) ∈ Rk do
nij ← nij +Nk

end
end
// Find mean travel times tij on each segment
forall (i, j) ∈ E do

ρij ← nij/dij (segment density)
tij ← t(ρij) (segment travel time, Eqs. 4–6)

end
obj(P)←

∑
(i,j)∈E nij tij (total travel time, Eq. 7)

return obj(P)

optimal equilibrium is reached by a variable cost matrix P, the
entries of which form the parameter vector for the optimisation
algorithm. This equilibrium occurs when the total travel time
of all drivers on their routes, as introduced in Equation 1, are
minimal. Since the traffic flow model yields expected travel
times (in the form of space mean travel times), we define the
objective function as the total space mean travel time over all
routes driven on the road network. This total travel time can
be conveniently expressed using the segment vehicle counts
nij , which are directly dependent on P:

obj(P) =
∑

(i,j)∈E

nij(P) tij(P). (7)

Note that each segment mean travel time tij is also a function
of P since it is dependent on the vehicle count nij . Algorithm
1 shows, in pseudocode, the routine to compute the objective
function. The purpose of the optimisation algorithm is to find
an optimal variable cost configuration such that the value
of the objective function, the total travel time, is minimised.
Since we are considering an entire road network, optimising
the variable cost matrix for this network is a complex high
dimensional problem. Furthermore, it is not clear beforehand
where the minima in the objective landscape could lie. Black-
box metaheuristic algorithms have been developed to tackle
precisely these kinds of problems. In principle, any such
algorithm could be used to search for local optima of variable
cost configurations, in hopes of approximating a system optimal
equilibrium. That said, for these purposes, an algorithm that
is robust for high dimensional problems is preferred, as the
number of parameters increases proportionally to the number
of edges in the graph.



For our implementation, we employ a genetic algorithm
(GA) adapted for continuous optimisation. GAs are a class
of high dimensional optimisation algorithms loosely based on
biological evolution, which optimise by ‘evolving’ a population
of candidate solutions. For this optimisation problem, we use
a population size of 20 and an offspring size of 20, with elitist
selection. Mutations are generated using a normal distribution
with zero mean and a standard deviation of 4, at a mutation
rate of 0.2 per parameter.

V. CASE STUDY: TOKYO CITY CENTRE

In order to test our traffic flow optimisation method, we
applied it to movements in the city centre of Tokyo (i.e.
excluding the Greater Tokyo area). Since the optimisation
method of this paper is general, it is intended to be suitable
for use within any urban area for which movement and road
network data are accessible. In our case, the choice for the city
of Tokyo was motivated by the availability of road network
data which captures the most important roads in the vicinity
of the considered movement records, while also being of low
enough resolution (i.e. having few enough edges) for the cost
function to be computed in reasonable time on a regular PC
processor.

In this section, we briefly discuss the movements and road
network data used for the case study and further present our
experimental results.

A. Movement data

In principle, any type of movement data in the city that
reflects movements of cars over the network, and can be
expressed in the forms of DL and DM introduced in Section
III, is suitable. We used crowd-sourced data in the form of
movement data collected by Foursquare, a location-based social
network platform. We made this choice in order to show
the feasability of an alternative to floating car data, which
is generally not freely available due to either privacy concerns
or commercial interests. With Foursquare, users can share their
check-ins at numerous venues, which allows identification of
movements between these venues. Aggregated data from the
years 2017-2019 were made available as part of the Future
cities challenge 2019 [6]. We selected only those parts related
to the Tokyo city centre. Within this region, the data provides a
list of approximately 25,000 locations together with their GPS
coordinates and venue category (restaurant, railway station
etc.), as well as a movements list, containing movements of the
same form as the tuples in DM , but with additional indications
of the month during which the movement occurred, and the
time of the day (periods of 4 to 6 hours). Because the amount
and type of movements made could be different depending on
the time of day (e.g., due to commutes to and from work),
we considered only movements made in the afternoon (15:00
– 19:00 o’clock), and aggregated the frequencies Nk for the
same movements in all 24 months into a single frequency, for a
total of nearly 135,000 movement records. This is summarised
in Table I.

Longitude interval [139.705, 139.862]
Latitude interval [35.594, 35.727]
Period Apr 2017 – Mar 2019
Time of day 15:00 – 19:00
Locations 25,000
Movement records 135,000

TABLE I. Properties of the Foursquare movement data as used
in this research.

Since the used dataset includes movements besides vehicular
journeys (such as subway and walking trips), and gives no
indication about transportation mode proportions, we chose
to adjust the frequency distribution to reflect the routes likely
to be made by car. For this we followed the McFadden logit
choice model [19], which is a commonly used behavioural
theory with applications in econometrics [18] and transportation
forecasting [3]. We discriminate between walking, driving, and
railway transport. In the model, the probability pm(Ak, Bk) of
choosing transportation mode m on a journey between locations
Ak and Bk is given by a logistic distribution:

pm(Ak, Bk) = exp[u(m,Ak, Bk)]
/∑

m

exp[u(m,Ak, Bk)]

(8)
where u(m,Ak, Bk) is the utility function which models the
desire to take transportation mode m on the given movement.
The most straightforward form of the utility function which
we applied is a linear dependency on the total distance as well
as the distances to the closest train stations. For clarity, denote
S ⊂ DL as the set of all station locations. Then, we defined u
separately for each mode, as follows:

u(walk, A,B) =−α1 d(A,B)− γ1 (9)
u(auto, A,B) =−α2 d(A,B)− γ2 (10)
u(train, A,B) =−α1[d(A,SA) + d(B,SB)]

− α3 d(SA, SB)− γ3 (11)

where d is the Haversine distance between two locations, SA ∈
S is the train station closest to the origin location A and SB ∈ S
is the station closest to the destination location B. Furthermore,
γ1 . . . γ3 model the base reluctance for a person to take the
corresponding transportation mode. Note the use of α1 as
the scaling factor for the origin-station and station-destination
distances, which we assume to be walked based on the high
density of stations in Tokyo. The scaling factors in the utility
functions were chosen to match transportation choice ratios [8]
for trips between a set of randomly sampled origin-destination
pairs within the perimeter of the Tokyo city centre, as well as
the assumption that short distances (up to ∼500 metres) are

α1 α2 α3 γ1 γ2 γ3
0.5 0.1 0.1 −0.4 3.7 2.8

TABLE II. Tuned scaling factors for the transportation mode
choice utility functions (Eqs. 9–11).



mostly walked. The right choice of scaling factors incentivises
walking on short distances through a low γ1 as compared to
γ2 and γ3, but a high α1; meanwhile, for longer distances,
taking either car or train is encouraged by low α2 and α3, with
the availability of nearby stations being in favour of the train.
Table II shows the scaling factors we chose to satisfy these
requirements.

Having found the vehicle probabilities Pauto(Ak, Bk) for
each origin-destination pair (Ak, Bk) from Equation 8, we cor-
rected the corresponding frequencies Nk with these probability
values, which reduced the total number of original frequencies
by 71.7%. Finally, the so-obtained vehicle frequencies were
normalised to sum to unity and multiplied by a variable
total number of vehicles N that the road network graph we
constructed could support (see Subsection V-C).

B. Road network data

The road network data used is based on the Asia shapefile
provided by the Earthdata Global roads open access data
set [4]. It contains information on the road networks of the
entirety of Asia with a variable resolution (i.e., edge density).
The resolution of the Tokyo city centre is well suited for
the algorithm, in the sense that the number of edges is both
low enough for the problem to be tractable in terms of
computational complexity; and high enough to have multiple
road segments present in the vicinity of the clustered locations.
The latter is needed, since the presence of too few segments
leads to overuse of single segments by routes from too many
locations, causing unrealistic congestion.

The road data is translated into a graph representation by
finding intersections between lines and turning these into
intersection nodes. The lines themselves are used to create
edges between intersections. Location nodes are created by
identifying the coordinates of the locations from DL, which
are connected to the nearest intersection node.

The road network representation was simplified in a number
of ways. Since there was no data for the number of lanes per
individual road segment, we set the number of lanes l = 2
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Fig. 2. Percentage of improvement plotted against the amount
of cars N on the road network.

for all roads, in both directions. For similar reasons, we set a
constant speed limit vm = 100km/h for all roads. Since the
network data contains only major roads, these are reasonable
simplifications that do not significantly impact our results.
Furthermore, for the occupancy of the roads, we did not take
temporal aspects into account, and instead considered a car
to be on all roads of its path simultaneously. In reality, the
occupancy of roads would therefore be more spread out over
the paths taken. However, the results we present still stand, for
the reason that, given the high number of vehicles on the road in
reality, we can expect multiple vehicles to be at different points
along a single (approximate) route at the same time, especially
those routes that appear in the relatively low-resolution road
network we use.

C. Experimental results

The analysis of the results of our case study will be split into
an evaluation of the proposed method through improvement
percentages, a closer look at the optimisation progress over
iterations for a specific solution, the evaluation

of the fairness of the proposed method using an example,
and a visualisation of what a good solution would look like
in practice. The improvement percentages were computed by
taking the situation without viariable costs as a baseline. The
GA in our experiments used a population size of 20, with
a mutation rate of 0.2, elitist (plus) selection, and random
single-point crossover.

1) Achieved improvements: Because the true total number
of cars N on the network is unknown, we ran our algorithm
several times, setting N to random values. This approach
allowed us to evaluate our method without committing to a
single estimation of the number of cars on the network at
the same time. Since the number of cars on the road tends
to be dynamic depending on factors such as the time of day
or special events, it could therefore be useful to be able to
estimate how much our method could improve on the default
situation of no variable costs, for any number of cars that
might actually be on the roads in a given scenario.
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Fig. 3. Objective function value plotted to the number of GA
iterations. Values are the total time spent on the roads.
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Fig. 4. Histograms of the distribution of times spent on the road, (a) without variable costs (b) with variable costs.
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Fig. 5. Histograms of the distribution of times spent on the road, (a) without variable rewards (b) with variable rewards.

For each value of N the number of movement clusters C
was determined using Equation 3. After running the algorithm
we stored the value of N , along with the resulting percentage
of improvement the algorithm was able to achieve compared
to a scenario with no variable costs. A scatter plot of these two
variables, as shown in Figure 2, can give some insight into how
well the algorithm is expected to perform on this road network
for a given number of cars on the road. As Figure 2 shows,
better results are achieved by the algorithm when there are
fewer cars on the network. The highest amount of improvement
of any run was 13.15% for N = 31,584, resulting in a total
time gain of 925 hours under the current model and parameter
settings. Conversely, the lowest amount of improvement was
1.35% for N = 112,985, with a total time gain of 437 hours.
Thus, even though the improvement percentage is more modest
when there are more cars on the road network, a relatively
small improvement for many cars can still result in a large
number of hours spent on the road in total being saved, even if
the percentage itself might not be that high. A possible reason
for the algorithm achieving higher improvements with a low
value of N could be that there is simply more to optimise in
those situations; when there are too many cars on the network

at once, not all the cars of a route will fit on a single road.
Consequently, once the shortest route is already fully occupied,
those cars would overflow onto the next shortest path, which
makes those roads less attractive as alternatives for other cars.
When N is low, however, there are many relatively empty
roads available to redirect traffic to, thus allowing for large
improvements compared to scenarios where drivers only take
the shortest path.

2) Closer look at the best solution found: In order to gain an
insight into the details of the optimisation process, we selected
the run with the highest percentage improvement as a best-case
example, where the effects of the optimisation can be observed
most clearly. This example considers N = 31,584 and C = 48.

A logical aspect to look at in detail would be the progress
of the GA fitness values over iterations. This progress was
plotted in Figure 3, with a horizontal line for the fitness value
when there are no variable costs as reference. Of interest, as
well, would be how optimised solutions compare to randomly
generated variable cost configurations; we do this to ensure that
simply adding any weights to road segments is not sufficient,
and instead optimised weights are required. We therefore added
an extra horizontal line representing the average fitness value



of five random variable cost configurations.
Figure 3 shows that the GA successfully optimises its

solutions to improve the total travel time compared to when
no variable costs are used. In the case of this run, it was able
to achieve an improvement of 13.15%, which under this model
and these parameter settings amounts to 925 hours saved for
31,584 drivers. Another salient observation would be that the
figure illustrates the importance of the optimisation algorithm,
as using a solution with random variable costs produced an
objective function value comparable to not using variable costs
at all. This particular run was unusual in that regard, as in most
runs random solutions not only did not manage to improve over
the baseline, but actively achieved worse objective function
values than those not using variable costs. The reason the first
iteration of the GA already produces better results than random
costs is that, in each iteration, the objective function value of
the best solution of a total population of 40 is plotted, rather
than the average.

3) Fairness of the proposed method: A possible concern
when redistributing traffic to reduce congestion is the fairness
of the method. For instance, some individual drivers might be
forced to spend a far longer time to get to their destination
in order to allow the majority of drivers to experience roads
with less congestion. To see whether our solutions caused a
disproportionately high delay to individual drivers, we created
histograms of the total travel time it took drivers to get to their
destination, in the unoptimised and optimised scenario. These
histograms are shown in Figures 4a and 4b.

The histograms show a modest difference in the travel time
distributions between the presence and absence of variable
costs. The optimised solution does show higher frequencies of
drivers spending little time on the road compared to the scenario
without variable costs, as well as a sharper drop in frequency
for higher travel times. For other runs with lower improvement
percentages, the difference between the histograms tended to
be smaller as well, but for some of those, there was also a
slight increase in the number of drivers spending a relatively
longer amount of time on the road. Overall, these distributions
could be seen as positive results. Although it does appear
that the effectiveness of the total travel time improvements
being achieved came at the expense of a higher delay for
few individuals in some runs, as in the case of the run from
Figure 5b, this effect is very small when it happens. Moreover,
the amount of individual drivers who spend less time on the
road has increased substantially. Nonetheless, if this effect
was considered as a large problem, a possible solution would
be to add a weighted penalty term to the objective function,
corresponding to the sum of the extra time spent on the road
by individual drivers who are slower when the variable costs
of a solution are used. Higher weights for the penalty term
would result in these cases being avoided more assiduously.

4) Solution visualisation: As an instance of an optimised
solution, a visualisation of the road network graph displaying
optimised variable costs is shown in Figure 6. In the figure,
black edges are roads with a variable cost of 0, and red edges
are roads with a high variable cost. Further, black nodes signify

Fig. 6. Visualisation of the road network, as an overlay on a
map of Tokyo, with edges coloured according to their associated
variable costs. Red edges have high costs, while black edges
have a cost of 0. Map source: OpenStreetMap [20].

road intersections, whereas green nodes are locations from the
location dataset DL. Looking at the figure, it is interesting
to see that high-quality solutions appear to favour imposing
high variable costs onto short, central roads connecting their
larger neighbours, leaving the outer roads mostly untouched.
This does not apply to all such roads, however, and thus
rather than discouraging using central roads altogether, the
algorithm dynamically selects roads to impose such costs based
on movement data. The resulting solutions are such that, when
balanced to the cost of alternatives, these central roads will be
most attractive only to a subset of drivers, while others will
prefer alternatives, thus optimally distributing the drivers over
all available routes.

5) Viability of rewards instead of costs: While the emphasis
of our analysis has been on using variable costs to reduce
the total amount of hours spent on the road, we have stated
repeatedly throughout the paper that using variable rewards
(negative variable costs) could be equally effective at improving
the traffic flow of a city. This generality offers decision-makers
with more flexibility with regard to a real-life implementation
of this type of method. To support our claims, we performed
a run with identical settings to that of the best solution found
(N = 31,584, C = 48), with the only difference being that the
optimisation algorithm now uses solutions of negative costs,
or rewards, instead of costs.
The histograms of this run are shown in Figure 5; its
characteristics, seem very similar to that of the best solution
using costs. To compare costs and rewards more empirically, we
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Fig. 7. Comparison of improvement percentage distributions for
using variable costs or rewards visualised by boxplots, based
on a sample of 20 runs for each condition for N = 31,584
and C = 48.

ran the two conditions 20 times (with N = 31,584 and C = 48
for both, as we have looked into runs with these settings in
more detail), and created boxplots of the resulting sample of
improvement percentages in Figure 7. The figure shows that
both samples contain values within a similar range, although the
spread of the rewards sample appears to be greater than that of
the costs sample. Though not identical, the highly comparable
distributions of both conditions seem to be encouraging signs
that the rewards would indeed be a viable alternative to costs.

VI. ETHICAL CONSIDERATIONS

When working on a project explicitly aimed at having some
impact on the lives of people in the real world, it is advisable to
dedicate some time to the reflection on the ethical implications
of the applications or methods being considered. In our case,
we identified the following points on which ethical objections
could be made:
• A few specific routes might be disproportionately targeted,

which would be unfair even if it results in greater benefits
for the population as a whole.

• The method could unfairly affect some groups or social
classes of people, as the costs or rewards could have
a different value for different people depending on, for
example, their financial situation.

• Directing how individuals behave could be considered a
violation of their individual freedom.

• The result of the redistribution depends on the data source.
The choice of the input data can disadvantage groups of
citizens.

• Location information is sensitive personal data, using those
data for the greater good needs to be balanced against
preserving citizens’ privacy.

For the first point, we would refer to Figure 4, where we
show that the change to the distribution was modest in this
instance, and to Section 5.3, where we discuss the possibility
of a penalty term for solutions where individual routes are

worse off than they were before. To the second point, we
would like to emphasise that our variable costs do not have
to be monetary in nature, nor are they necessarily absolute
values rather than relative to some property of the drivers
(such as income). The variable costs do not depend on any
particular implementation, as long as the value of the variable
costs compares predictably to that of the spatial costs, and is
consistent for all drivers. With regard to the third point, while
we acknowledge that some people might feel strongly about
the freedom of driving a car as independently as possible, we
would also like to point out that individual driving behaviour
is already being directed (far more forcibly and directly) by
speed limits and traffic lights. Those measures, too, limit the
drivers’ freedom to determine their own behaviour, but they
fulfil a vital role in keeping traffic as safe and functional as
possible, to the benefit of traffic flow and safety as a whole.
Regarding the input data, we would like to argue that city
administrators are in charge of choosing data that represents
car movement in their city best. Transparency about which
data is used and how this influences the redistribution is a
core task of administrators and data scientists when putting
data-driven policies into practice. On a similar note, we
would like to note that administrators will need to consider
which level of detail of location information is needed to
achieve a good redistribution. For this case study, aggregated
and anonymised location information offered enough detail
necessary to improve overall travel time. Individual trajectories
were not necessary, which addresses all privacy-related
concerns.

VII. CONCLUSION AND FUTURE DIRECTIONS

We have shown that we can successfully reduce traffic
congestion by redistributing traffic using variable road segment
costs, and optimising this cost configuration using a meta-
heuristic algorithm, based on crowd-sourced urban movement
data. In a case study of the Tokyo city centre, our algorithm
was able to find configurations reducing the total time spent
on roads by up to 13.15%, resulting in a total time gain of
925 hours. When the number of cars on the road was larger,
the improvement percentage decreased, but the total time gain
tended to be higher, as those relatively small improvements
could be used by more drivers.

Though the practical implementation of the variable costs
may be another non-trivial problem to address first, the positive
results show that, at least conceptually, this method could result
in improved traffic flow when applied in practice.

In order to improve the applicability of our approach, future
work could include addressing the simplifications we made,
in particular with regard to the road network representation.
Case studies on other cities, particularly those with different
morphological properties than Tokyo, would also be beneficial
to show the method’s generalisability. Furthermore, it could be
insightful to adopt traffic simulations in place of our occupancy
estimation and Greenshields traffic flow model, thus introducing
a temporal component. Other future work might focus on



selecting the best possible metaheuristic optimisation algorithm
with the best possible parameter settings, as well as employing
vehicular movement data, such as floating car data.
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