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Abstract. How do we make sure that all citizens in a city have access
to enough green space? An increasing part of the world’s population lives
in urban areas, where contact with nature is largely reduced to street
trees and parks. As optional tree planting sites and financial resources
are limited, determining the best planting site can be formulated as an
optimization problem with constraints. Can we locate these sites based
on the popularity of nearby venues? How can we ensure that we include
groups of people who tend to spend time in tree deprived areas?
Currently, tree location sites are chosen based on criteria from spatial-
visual, physical and biological, and functional categories. As these criteria
do not give any insights into which citizens are benefiting from the tree
placement, we propose new data-driven tree planting policies that take
socio-cultural aspects as represented by the citizens’ behavior into account.
We combine a Location Based Social Network (LBSN) mobility data set
with tree location data sets, both of New York City and Paris, as a
case study. The effect of four different policies is evaluated on simulated
movement data and assessed on the average, overall exposure to trees as
well as on how much inequality in tree exposure is mitigated.

Keywords: Urban computing · tree planning · social network analy-
sis · community detection algorithms · mobility data · multi-objective
optimization

1 Introduction

As of 2018, 55% of the world’s population lives in urban areas, a number which
is projected to grow to 68% by 2050.1 The North-American continent stands out
in particular, where this number is already at 82%. While it is easy to point out

? Both authors contributed equally to this project.
1 United Nations Department of Economic and Social Affairs, World Urban-

ization Prospects 2018, https://population.un.org/wup/Publications/Files/

WUP2018-Report.pdf, p. xix, last visited 7 December 2020.

https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
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RANKING

#1: (52.15710, 4.48560)
#2: (48.87164, 2.31061)
#3: (48.86181, 2.34532)
#4: (48.85092, 2.33471)
#5: (48.89447, 2.28958)

Fig. 1: We describe four policies that combine data from multiple sources and
produce a ranking of potential tree planting sites.

the economical reasons for moving to the city – at least at first sight [5] – there
are certainly downsides attached to urban life. One of them is the inescapable
fact that cities, by definition [4], have a higher population density, leading to
more built-up areas and thus a scarcer supply of nature than in rural areas.
However, as Rohde and Kendle put it, “it is obvious from any casual observation
that many human beings do not like to be dissociated from the natural world;
as a nation we spend millions of pounds every year on garden and household
plants” [15]. Indeed, contact with nature does seem to be linked to human
well-being and positive emotional effects and is even said to strengthen urban
communities [9, 13]. Apart from socio-cultural benefits, urban greenery can help
to mitigate two characteristically urban problems: air pollution due to traffic [10]
and (extreme) warmth due to the urban heat island effect [12]. The inclusion of
parks and street trees in city landscapes is, therefore, an important aspect of the
urban planning process.

To date, socio-cultural arguments play a marginal if not non-existent role
in formal frameworks describing criteria for selecting potential tree planting
sites. They do not account for the amount of people that are accommodated by
the newly planted trees. Following the established criteria, trees may end up in
places where they are beneficial to some people, but its effects may not serve the
majority of people, or may never reach the people yearning for them most.

We propose taking a data-driven approach based on available mobility data
which allows considering additional tree planning criteria. Popular adoption of
Location-Based Social Network (LBSN) applications has allowed the collection of
valuable data representing the movement of people between venues. We identify
policies that take people’s movement into account when choosing potential tree
planting sites. These are based on (1) site popularity, (2) existing tree density at
potential planting sites, (3) existing tree density at other sites that are visited
often by the same people and (4) a multi-objective combination of (1) and (3).
Each of the policies takes another aspect of the data into account and provides
a ranking for the potential planting sites, as schematically shown in Figure 1.
This ranking can be embedded within the criteria of established tree planning
frameworks that currently lack this socio-cultural value and insight.
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Our paper makes the following contributions:2

– We describe novel data-driven criteria for potential tree planting site selection
based on information on people’s movement from a venue interaction network;

– We analyse the impact of these policies in a way that uncovers inequalities
between groups of citizens and shows which policies decrease these inequalities;

– We apply this method to rank venues as potential tree planting sites in New
York City and Paris.

This paper is organized as follows. Section 2 presents the related work. We give
the problem definition in Section 3, for which we present, as potential solutions,
the tree-planning policies in Section 4. In Section 5 we describe our experiments,
applying our methods to New York City and Paris. The results are discussed in
Section 6. Finally, Section 7 presents our concluding remarks.

2 Related work

Most of the work in the field of tree planning revolves around selecting appropriate
tree species for predetermined planting sites [17,18]. This reflects the observations
by Spellerberg and Given [18] and Pauleit [14] that tree planning is often an
afterthought in the urban design process and characterised by pragmatism. While
the visual aesthetic of trees and socio-cultural function of green spaces in the
city seem to be important motives for planting trees, the first motive seems to
play only a small role in the tree planning process [16] and the second motive is
not reflected in the sparse body of site selection criteria that we could find.

The work by Amir and Misgav [1], in which they aim to describe a complete
tree planning decision framework, does incorporate criteria on site selection.
They define three useful categories of criteria, which are spatial-visual, physical
and biological and functional. Criteria relating to the socio-cultural function
of green spaces, however, are missing. We observed several works describing
site selection criteria [7, 14], but those fall within the category of physical and
biological criteria that are essential for the survival of the tree. Moriani et al. [10]
did use population density in a planting priority index, but as they focused on
the air pollution-reducing quality of trees, this still falls within the category of
functional criteria. We believe then, that the body of site selection criteria is still
incomplete and that we can contribute to this framework by introducing new
socio-cultural criteria that take people’s movement into account.

As a way to capture the general movement patterns of people within cities,
we utilize data collected by LBSNs. As defined by Zheng and Zhou [21], social
networks are social structures that consist of individuals connected to each other
via specific types of interdependencies. In LBSNs these individuals are connected
through their shared experience, interacting with the locations in the network.

2 This work earlier participated and was selected for the Future Cities Challenge
co-organised by Foursquare at NetMob 2019. The work has not been published
elsewhere.
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Oftentimes, in LBSNs users announce their visit to venues through a so-called
check-in option. The check-in data can provide information about the movement
of people between a network of venues. The structure of such a network can
be explored to find underlying patterns. For instance, locations can be grouped
based on the similarity between user profiles [8]. Hung et al. [6] use these user
profile similarities to find user communities. Girvan and Newman [3], however,
use clustering algorithms on the full network to detect communities, eliminating
the need for individual trajectories.

Most of these approaches have considered studying the network properties of
LBSN data without considering how such information can be used in improving
urban aspects. Recently, Arp et al. [2] have shown how such data can be used in
optimising the state of traffic within the city. A recent trend in which private
companies make their data available through various “Data for Good” programs
helps to advance research in the field. In this paper, we aim to study whether such
data can be used for improving decision making regarding the optimal allocation
of resources, in this case trees, throughout the city.

3 Problem definition

To find solutions to the planting site selection problem, we combine urban data
consisting of venue locations and movements between them with tree location
data. Given the undirected network graph G = (V,E,W, T ), where nodes v ∈ V
represent venues and weighted edges e = (v1, v2), e ∈ E represent movements
of people between a pair of venues v1 and v2, with weight we ∈W denoting the
number of movements between the pair of venues, as well as the tree density
tdi ∈ T value for each node vi, each policy creates a ranking of planting sites;
the goal is to find a policy that satisfies a certain objective. The objectives we
selected are (1) the best absolute increase in number of tree encounters among
citizens and (2) the largest decrease in inequality in allocation of resources for
citizens. These are further explained in Section 5.4.

4 Methods

In this section, we describe the four different planting site selection policies:
degree (Section 4.1), tree density (Section 4.2), community tree density (Section
4.3) and a combination in the form of a Pareto ranking (Section 4.4).

4.1 Policy 1 – Degree

A first possible approach to maximize the impact of planting a tree, is to plant it
near a place where many people pass by. From this perspective, the goal is to find
the venues that are maximally popular among visitors. To find these locations
we maximize the degree of all nodes v in the undirected network graph, defined
as the sum of the weights of the edges that are connected to it.
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4.2 Policy 2 – Tree density

A second possible approach to maximize the impact of planting a tree, is to
identify locations that are visited by people who do not regularly come across trees.
In this case, the number of people who will come across the newly planted tree
may be lower than in the previous case, where the location would be frequented
by many people. Nevertheless, the people who do encounter the tree may gain
more from the encounter because of their lack of earlier encounters. For this
policy, we find locations by minimizing the sum of trees in the direct vicinity of
venues, which we define as a radius of 25 meters around each venue. We call this
sum of trees the tree density tdi of a venue vi.

4.3 Policy 3 – Community tree density

If we just prioritize venues with few trees in their immediate vicinity, we would
discard the reality that people move about and that people are thus prone to
visit multiple venues. A single venue that has few trees in its vicinity might not
be a major problem if the usual crowd for this venue also regularly visits other
venues that do have more trees in the neighbourhood.

Using LBSNs, we can use this observation in our objective. To this end, we
introduce a measure we call the community tree density. This measure intends to
highlight groups of related venues that have a low tree density, instead of single
venues that have a low tree density. A relation between venues, in this sense, is
determined by people travelling often between those venues. Using this policy,
we aim to minimize the community tree density.

Using graph theory parlance, these related venues can be discovered through
the task called community detection. A community is a group of nodes of which
the nodes are densely connected with each other, but much less with the rest of
the network [3].

To detect the communities, we use the Leiden community detection algorithm
[20]: a fast algorithm that is able to find communities with high quality. It
optimises modularity, a measure that compares the density of connections within
a community with the density between communities [11].

As it is computationally heavy to compute the modularity of a community,
the algorithm uses heuristics to approximate it. Therefore, it does not necessarily
return the best community layout. To gain confidence in the robustness of
our communities, we run the algorithms N times to find different community
partitions. In Section 5.2, we find N = 50 to be reasonable.

We compute the community tree density ctdni in community detection iteration
n for a venue vi by averaging the tdj – which is computed as in Section 4.2 – of
all venues vj that are in the same community Cn

k as venue vi. As we run the
community detection algorithm N times we obtain the overall community tree
density ctdi of a venue vi by averaging over each of its computed community tree
densities, as shown in Equation 1.
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4.4 Policy 4 – Pareto ranking

The policies discussed above, venue degree and community tree density, could
both be important in discovering the most suitable location(s) for one or more
new trees. Indeed, a venue with a low tree density coefficient could have only one
visitor, whereas other venues in the same community that have a similarly low
tree density coefficient could have many visitors. In this case, the latter venue(s)
would be more appropriate as a tree planting site. It is therefore important to
take both objectives into account. To achieve this, we borrow a method from
multi-objective optimization theory, the Pareto front [19].

We combine the venue degrees, i.e., the popularity of venues, with community-
based tree density coefficients by detecting the set of venues that are Pareto
efficient, i.e., the venues that are found by minimizing the tree density coefficient
and maximizing the influence of the venue: the optimal trade-offs between the
two measures. For these venues it is impossible to improve for one objective,
without impairing the other objective. Also called the Pareto front, the venues in
this set could meet our criterion of helping most people needing trees. To rank
all tree planting sites on both objectives, we first compute the Pareto front and
assign the appropriate rank to the locations in this set, and then remove the
Pareto front from the set of locations. In this manner we iteratively compute
Pareto fronts, rank venues on this front and then remove these from the set until
all sites are ranked.

5 Experimental set-up

In this section, we describe the experimental set-up we will use to compare the
tree planting policies for two cities, New York City and Paris. This section is
structured as follows. In Section 5.1, we list the properties of our data sets.
In Section 5.2, we conduct an experiment to find a suitable hyperparameter
setting for the community detection algorithm. In Section 5.3, we describe how
we simulate the movement of citizens through the city, since we don’t have
precise trajectory information. Finally, in Section 5.4, we explain what we want
to measure with the experiments and how we evaluate the results.

5.1 Data sources

Two case studies We conducted two case studies to investigate the implemen-
tation and workings of our criteria using real data. For this, we chose to focus on
New York City and Paris, as for both cities data sets describing venue interac-
tions and tree locations were available, which are both needed for computing the
rankings according to the policies. These data sets are described below.
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Venue interaction data Foursquare City Guide is a mobile app that recom-
mends places to its users based on their likes or check-ins. The venue interaction
data set provided by Foursquare comprises of two parts: venues and movements
between them. Venues in this set are locations people can visit. Venue coordinates
are recorded, as well as their name and a category. Movements are recorded when
individuals make consecutive check-ins at different locations.

The data set contains check-in information from between April 2017 and
March 2019 of ten different cities around the world, from which we picked Paris
and New York City as examples. Note that other mobility data can be used to
replace or augment the Foursquare data where available (e.g. traffic data or WiFi
scans), as long as we know which venues are connected by people’s movement.

Table 1: Description of venue interaction data set (Foursquare).
New York City Paris

Original
After pre-
processing

Original
After pre-
processing

# venues
(nodes)

17,975 15,610 7,133 6,291

# interactions
(edges)

7,920,000
(directed, parallel)

246,605
(undirected)

7,920,000
(directed, parallel)

182,187
(undirected)

We pre-processed this data set by creating a network where nodes represent
venues and edges represent movements, and removing small unconnected ‘islands’
of up to 3 nodes that were not connected to the large connected component. We
also removed the venues for which no location information was known. Finally,
we flattened bidirectional edges into a single undirected edge for which the edge
weight denotes the summed number of interactions between two given venues.
Table 1 shows the number of nodes and edges before and after pre-processing.

Tree location data: the tree census data set of New York3 contains information
on street trees in New York City and surrounding cities. It contains information
on among others the species and health of the trees, as well as their longitude
and latitude. As only street trees were counted, trees in parks were not taken
into account in the tree survey and are therefore not present in the data set.

The Parisian tree census data set4 contains similar information on its trees,
most notably the locations using longitude and latitude. It should be noted that
for the Parisian tree data set only trees in the city center were recorded.

3 ‘TreesCount! 2015 Street Tree Census’, data set provided by the NYC De-
partment of Parks & Recreation, https://data.cityofnewyork.us/Environment/
2015-Street-Tree-Census-Tree-Data/uvpi-gqnh, last visited 7 December 2020.

4 ‘Les arbres’, data set provided by the Direction des Espaces Verts et de
l’Environnement of the city of Paris, https://opendata.paris.fr/explore/

dataset/les-arbres/, last visited 7 December 2020.

https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh
https://opendata.paris.fr/explore/dataset/les-arbres/
https://opendata.paris.fr/explore/dataset/les-arbres/
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5.2 The number of iterations of the community detection algorithm

As described in Section 4.3, to obtain a stable value for the community tree
density for each venue, we run the community detection for N iterations and for
each venue compute the mean community tree density over these iterations. To
find a proper value for N , we tracked how much the computed mean venue tree
density value per venue changed after each iteration of the community detection
algorithm. We show this change as the difference between two consecutive mean
values (∆µ) for each of the venues in Figure 2. We observe that after 50 iterations,
the mean value for each venue is approximately stable.

0 25 50 75 100 125 150
Iterations of partitioning algorithm

0.0

0.1

0.2

0.3

0.4

 

Change in mean venue tree density 
per new partition [city=nyc]

Chosen cut-off

(a) New York City

0 25 50 75 100 125 150
Iterations of partitioning algorithm

0.0

0.2

0.4

0.6

0.8

 

Change in mean venue tree density 
per new partition [city=paris]

Chosen cut-off

(b) Paris

Fig. 2: The mean values stabilise with more iterations of the algorithm.

5.3 Simulation

We want to compare the effect of different policies on individual citizens’ exposure
to trees. The individualized trajectory data needed for such a comparison was not
available from the real life data set for privacy reasons. We therefore simulated
trajectories by generating random walks over the movement graph extracted from
our LBSN. Each random walk represents one citizen, visiting five venues in their
city on one day. For each venue vi in the random walk, the next venue ui ∈ adj(vi)
was randomly chosen from its neighbouring nodes, where the probability of a
node to be chosen corresponds to the weight of the connecting edge. For each of
the cities, we sampled 1% of the population size, resulting in 85,510 and 21,483
simulated trajectories for respectively New York and Paris.

5.4 Evaluation

For the evaluation of our framework we have the following goal: we want to
show the different ways in which each planting policy improves the city. We
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measure this improvement in two ways. First, we want to investigate which
policy is best at increasing the overall number of tree encounters for all citizens.
Second, we want to investigate which policies are best for targeting specifically
the trajectories that are lacking most in tree encounters and are therefore more
suitable to decrease the level of inequality among citizens in this regard.

The evaluation should thus provide answers to the following questions:

1. Overall, which of the proposed policies increase(s) the number of tree en-
counters by the citizens the most?

2. Which of the policies is/are best suited for removing inequalities in the
number of tree encounters between citizens?

Ideally, we would have compared our policies with existing tree planting poli-
cies as baselines, but these are not (well) described yet. We therefore compare the
performance of our different proposed policies and consider a random assignment
as a baseline.

6 Results

In this section, we describe the results of our experiments, in which we apply
the four different tree planting policies to the two cities and evaluate them using
simulated random walks. This section is structured as follows. In Section 6.1, we
describe the situation in each city before we plant any new trees. In Section 6.2,
we show the distribution of the values the policies use to rank the venues. In
Section 6.3, we use the policies to plant new trees and analyse the result.

6.1 Initial situation

To define the initial situation, we counted the number of trees encountered along
each trajectory, simulated by a random walk, and grouped these trajectories into
nine bins of equal size, ordered in ascending order according to the number of
tree encounters, in order to be able to compare intuitively with the new situation
later (see Figure 3). The two cities have a similar distribution of tree encounters.

6.2 Ranking the venues

By applying our framework to the data, we generated four rankings: one for each
planting policy as discussed in Section 4. We show the distribution of the values
of each planting site in Figure 4 for New York City and Figure 5 for Paris.

Figures 4a and 5a show the degree distribution. For both cities, this follows
a power law, where most venues have a low degree, and only some venues have
a high degree. When using this policy, venues with a high degree are chosen as
desirable planting site. Figures 4b and 5b show the distribution of trees. They
are similarly distributed, following a power law.

In Figures 4c and 5c we show the community tree density. For both cities,
we see some venues where the communities are especially tree-sparse, but most
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Fig. 3: The distribution of tree encounters per random walk in the initial situation
grouped in ordered bins of ascending numbers of tree encounters.
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Fig. 4: The distribution of values for site selection policies (city: NYC).
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Fig. 5: The distribution of values for the site selection policies (city: Paris).

venues have on average a small number of trees in their community. When using
either the tree density policy or the community tree density policy, locations
with a lower density are given priority as desirable planting sites.

Finally, Figures 4d and 5d show the Pareto rankings of the cities. Here we
set the community tree density objective against the degree objective. As the
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degree is maximized and the community tree density minimized, priority is given
to those venues that are closest to the top right corner.

6.3 Planting the trees and analyzing the result

After defining the initial situation, for each city, we selected the 10% most
suitable locations according to each of the planting policies. This amounted to
1,561 locations for New York and 629 locations for Paris. We then analysed the
results as follows.

Table 2: Increase of tree encounters along random walks.
New York City Paris

Mean Std Mean Std

Degree 2.124 1.591 2.220 1.288

Tree density 1.617 1.841 2.972 1.376

Community tree density 1.242 2.003 2.775 1.547

Pareto 1.991 1.685 2.471 1.329

Random 1.632 1.394 2.930 1.421

Q1 – Best overall performance The mean increase of tree encounters per
random walk, re-counted after applying the policies, is shown in Table 2. The
standard deviation of the increase is also relevant for comparison of the results.
While a small standard deviation shows the improvements were reached over the
entire range of trajectories, a higher standard deviation shows a focus towards a
subgroup of the trajectories. Both could be desirable.

We see that there are differences between the two cities.
For New York, the degree policy on average increased the number of tree

encounters most and is thus best suited for increasing the overall number of tree
encounters. The tree density policy and especially the community tree density
policy had a high standard deviation, indicating that while on average they did
not increase the tree encounters as much as the degree policy, they did target
specific trajectories more than others. The Pareto policy achieved a mean and
standard deviation in between that of the degree and community tree density
policies, as expected as it is comprised of both policies.

For Paris the degree policy increased the number of tree encounters least. In
this city the tree density policy outperformed all others and is thus best suited
for increasing the overall number of tree encounters. Again, the community tree
density policy yielded the highest standard deviation, indicating site selection
near specific trajectories. The Pareto policy is outperformed by the random
baseline, due to its dependency on the degree policy.

To answer our first question from Section 5.4, then, we have to make a
distinction between the two cities. For New York City, the degree policy seems to
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(a) New York City

(b) Paris

Fig. 6: Mean increase of tree encounters on sorted random walks. From left to right
the bins hold trajectories that were increasingly tree-dense before site selection
and tree planting (see Figure 3). The top figures show the mean values of the
violin plots underneath, but present them relative to the center bin.
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be the best at increasing the number of tree encounters in general for New York.
It might however be prone to a green-get-greener phenomenon, which means
that established venues may be solidified in the new situation. For Paris, the tree
density policy has the best overall increase in tree encounters.

Q2 – Best policy for targeting inequality To answer the second question
in Section 5.4, we need a more detailed analysis. This is shown in Figure 6, where
the random walks are grouped into the same ordered bins as in Figure 3.

For both cities, the figures at the bottom of Figure 6 show the distribution
of the mean increase of tree encounters per walk of each bin. The top figures
show the same values, but present them relative to the center bin. This allows us
to easily spot whether a policy preferences sites in tree-sparse over tree-dense
trajectories, which will create an equalizing effect.

When we look at the results for both New York (Figure 6a) and Paris (Figure
6b), we see that the tree density and community tree density policies consistently
have the biggest difference between the center bin, left-most bins and right-most
bins and therefore have the most focus towards creating equality. In New York,
the tree density policy performs considerably better than the community tree
density policy, as the violin of the community tree density policy is quite wide
at the bottom and quickly grows slim. This effect is less visible for Paris, where
both policies tend to perform equally well, but the community tree density does
have the edge in the left-most bin.

As was also the case when evaluating which policy performed best under Q1
above, the performance of the Pareto policy tends to rank between the degree
policy and both tree density policies. This could mean that in certain use cases,
this policy could prove to be a valuable compromise between the policies regarding
both objectives outlined in Section 5.4.

To answer the second question, then, the tree density and community tree
density policies have, for both cities, the most ‘equalizing’ effect, because their
improvements are targeted specifically at the tree-sparse trajectories.

7 Conclusion

In this paper, we propose novel criteria that can be used when selecting potential
tree planting sites. The nature of these criteria is socio-cultural, capturing people
movement between venues. Having implemented them as policies for a case study
on New York City and Paris, we show that they are applicable in the field and
can be used to support decision-makers by providing them with the ranking
policy most appropriate for their goals.

From our experiments, we observe that there is no single policy that out-
performs all others. Depending on the goal of urban planners, one may select
the degree policy to increase the average tree encounters, or the community tree
density policy to target sites in tree-sparse trajectories. When faced with the
challenge of selecting tree planting sites, there are policy choices to be made, and
it is important to analyse the situation on a detailed level.
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We want to note that while tree survey data was available for the case studies,
these data sets were far from perfect. City planners who have the intention of
adopting a data-driven method will not only have to decide which site-selection
approach to use, but also make sure that the underlying data is sufficiently
complete and high in quality. On a similar note, we want to mention that
Foursquare data represents only a fraction of citizen’s movement, possibly not
representing all groups of citizens. Other mobility data such as traffic data or
WiFi scans can be used to paint a more representative picture.

We conclude that the newly introduced data-driven socio-cultural approach
to finding a tree planting site that benefits different communities of city dwellers
is feasible and can easily be implemented by urban planning organizations.
Integration of this approach depends on the availability of detailed records of
existing trees and movement data of city inhabitants.

In the future, we think it would be quite possible to extend this work towards
other site selection applications, such as communal waste bins. There is however
also more work to be done in verifying the results, both by extending it to other
cities, and also by implementing it with different data sources to enrich the
analysis.
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