
Automated Machine Learning for Short-term
Electric Load Forecasting

Can Wang
Leiden University

Leiden, the Netherlands
c.wang@liacs.leidenuniv.nl

Thomas Bäck
Leiden University

Leiden, the Netherlands
t.h.w.baeck@liacs.leidenuniv.nl

Steffen Limmer
Honda Research Institute EU

Offenbach am Main, Germany
steffen.limmer@honda-ri.de

Holger H. Hoos
Leiden University

Leiden, the Netherlands
h.h.hoos@liacs.leidenuniv.nl

Mitra Baratchi
Leiden University

Leiden, the Netherlands
m.baratchi@liacs.leidenuniv.nl

Markus Olhofer
Honda Research Institute EU

Offenbach am Main, Germany
markus.olhofer@honda-ri.de

Abstract—From detecting skin cancer to translating languages
and to forecasting electricity consumption, machine learning
is enabling advanced capabilities of computer systems across
a broad range of important real-world applications. In this
work, we present machine learning models for forecasting the
consumption of electricity. Short-term electric load forecasting
has been a fundamental concern in power operation systems
for over a century. Energy load forecasting is of even greater
importance, due to applications in the planning of demand
side management, smart electric vehicles and other smart grid
technologies. We use two state-of-the-art automated machine
learning systems (auto-sklearn and TPOT), which automate
model selection and hyperparameter optimization, to achieve
maximum prediction accuracy, and compare their performance
for the task of load prediction using two benchmark problems.
These benchmarks are derived from real world load consumption
tasks, namely household consumption from the UCI data reposi-
tory and consumption data from an industrial office building. Our
experimental results indicate great potential for improving the
accuracy of energy consumption prediction by using automated
machine learning approaches.

Keywords—Machine Learning; Automated Machine Learning;
Short-term Load Forecasting; Energy Management.

I. INTRODUCTION

Electricity load forecasting is an important problem for the
electric power industry. Many big utility companies have their
own load forecasting systems [1]. Load forecasts are needed
by other business entities as well, such as banks, insurance
companies and stock trading firms.

Due to its strong practical relevance and the challenges
involved, load forecasting is an active field of current research.
Many approaches to load forecasting can be found in the lit-
erature, with a focus on accuracy and efficiency of forecasting
models [2], [1], [3].

The primary product of the power industry is electricity,
which is moved through the grid to end users. There are two
features that make the electricity supply chain very different
from other supply chains, e.g., in manufacturing and retail.
First, electricity is transmitted very fast, by electrons travelling

at the speed of light. Second, since electricity storage in
batteries is uneconomical when people only want to transmit
energy [4], there is not yet a practical and economical solution
for bulk storage of electricity. Therefore, the supply and the
demand has to be balanced in real-time.

To plan and operate a system for achieving this balance, we
have to understand when, where, and how much electricity is
needed throughout the system. The transition to sustainable
sources of electrical power critically depends on the man-
agement of the highly volatile supply and demand. Without
accurate forecasts, end users may experience increasing rates,
brownouts or even blackouts. Therefore, the ability to forecast
electricity load is crucial to the power industry. Likewise,
automating the analysis and optimization of dynamic energy
data, as well as measuring decentralized energy production,
consumption, storage, and charging in a smart grid environ-
ment will contribute to reaching the goal of reduction in
realizing a reduction in CO2 emissions of up to 40% by the
year 2030 in the EU.

In addition to the energy consumption itself, a number
of further data sources can be relevant for load forecasting.
For instance, weather data can be relevant, as it can help
in estimating energy consumption resulting from heating and
cooling. Since consumption patterns change over time, infor-
mation about work schedules, holidays and special events is
also important.

Compared to classic demand or sales data, electricity de-
mand data often comes at substantially higher temporal reso-
lution. Much current research focuses on load forecasting at
temporal resolutions of 5 or 15 minutes [1].

Machine learning for short-term electric load forecasting has
been studied in prior work [2], [3], [5]. A machine learning
pipeline includes tasks such as data cleaning and prepro-
cessing, feature construction, model selection, hyperparameter
optimization, and postprocessing of machine learning mod-
els. As these tasks all require complicated decision making,
the success of machine learning applications crucially relies
on human machine learning experts, who are familiar with



this pipeline, select appropriate machine learning models and
set their hyperparameters. The demand for machine learning
functionality is growing quite rapidly, and successful machine
learning applications can be found in an increasing number of
sectors. Since end users in application domains are normally
not machine learning experts, there is an urgent need for
suitable support in terms of tools that are easy to use.

Automated Machine Learning (AutoML) provides methods
and processes that make machine learning accessible to non-
machine learning experts. AutoML chooses which machine
learning model to use on a given dataset, whether and how
to preprocess the dataset, and how to set all hyperparameters
at any time for any given dataset without requiring human
intervention.

In this work, we apply AutoML for the first time to short-
term electric load forecasting tasks. From a data science
perspective, the biggest challenge is to develop advanced
pipelines of algorithms covering a numerical dynamic data ap-
plication (real-time, optimized decision making). This pipeline
would enable the development of a highly advanced level of
decision making, which is impossible to attain for human
experts on their own. Thereby, AutoML contributes to the
human capital skills in the field of short-term electric load
forecasting. Specifically, in this work, we use two state-of-
the-art AutoML systems, auto-sklearn [6] and TPOT [7], [8],
to forecast the electric load consumption on two benchmarks.

The remainder of this paper is structured as follows: In
Section II, a brief overview of existing work about AutoML
applications and load forecasting is given. Section III then
describes the AutoML systems we used, auto-sklearn and
TPOT, in more detail. Section IV, V presents our experimental
approach, results and discussion, and finally, some conclusions
are given in Section VI.

II. RELATED WORK

Short-term load forecasting techniques are typically classi-
fied into two groups: (i) statistical techniques and (ii) artificial
intelligence techniques. The boundary between these two
groups is becoming more and more ambiguous, as a result of
multidisciplinary collaborations in the scientific community.
In the group of statistical techniques, four types of models
widely applied to this problem are multiple linear regression
(MLR) models [9], [10], semi-parametric additive models
[11], [12], auto regressive moving average (ARMA) models
[13], and exponential smoothing models [14]. In the other
group, four types of AI techniques previously used for this
problem are artificial neural networks (ANNs) [15], fuzzy
regression models [16], support vector machines (SVMs) [17]
and gradient boosting machines [18].

AutoML has been used in many areas, for example, image
classification [19], optical character recognition [20], and
prediction of the fuel consumption of ships [21] as well as of
biological ecosystem networks [22]. Here, we apply AutoML
for the first time to the problem of forecasting electric loads.

meta-
learning

ensemble 
construction

pre-
processor

feature pre-
processor

machine 
learning 
model

Automated by 
auto-sklearn

Model 
validation

Bayesian Optimization

meta-
learning

Data and 
budget

Fig. 1. Auto-sklearn workflow [6].

III. METHODS

The AutoML systems we used in our study are auto-sklearn
[6] and TPOT [7], [8]. These were chosen because they are
state-of-the-art, prominent and freely available.

A. Auto-sklearn

Auto-sklearn [6] uses Bayesian optimization [23] on top of
SciKit-learn [24] for generating machine learning pipelines.
Auto-sklearn uses SMAC (sequential model-based algorithm
configuration) [25] as the underlying Bayesian optimiza-
tion method to automatically optimize the machine learning
pipeline, including preprocessing and postprocessing method
selection, model selection and hyperparameter optimization.
We note that SMAC is a general-purpose automatic algorithm
configurator, and thus not limited to be used in the context
of AutoML. It uses random forests as surrogate models
in combination with an expected improvement criterion for
selecting candidate configurations. The surrogate model is
updated throughout the sequential optimization process, which
tends to be slow at the beginning, but usually shows good
performance over time [6].

AutoWEKA [26] is another AutoML system that uses
SMAC as the underlying algorithm configurator. Auto-sklearn
differs from Auto-WEKA in two respects: Firstly, auto-sklearn
offers the option of using a meta-learning step for initializ-
ing the Bayesian optimization process. This can result in a
considerable boost in efficiency, as meta-learning can quickly
suggest configurations of the ML pipeline that are likely to
perform well. In the experiments reported in the following,
we do not use meta-learning. Secondly, since it is well known
that ensemble models usually show better performance than
single models [27], [28], auto-sklearn uses an automated
ensemble construction step as a post-processing method to
leverage multiple ML models found during the Bayesian
optimization process. Auto-sklearn uses a greedy procedure
called ensemble selection [29], which starts from an empty set
and then iteratively adds the model that maximizes ensemble
validation performance. An overview of auto-sklearn workflow
is provided in Figure 1.



feature 
selection

machine 
learning 
model

selection

feature pre-
processing

feature 
construction

parameters 
optimization

Automated by TPOT

Data and 
budget

Model 
validation

Fig. 2. TPOT workflow [7].

Auto-sklearn supports 15 classification algorithms: adaptive
boosting, Bernoulli naı̈ve Bayes, decision trees, extremely
randomized trees, Gaussian naı̈ve Bayes, gradient boosting, k-
nearest neighbours, linear discriminant analysis, linear support
vector machines, kernel support vector machines, multinomial
naı̈ve Bayes, passive aggressive, quadratic discriminant anal-
ysis, random forests, and linear classifiers. Regression algo-
rithms are also available in auto-sklearn, including XGBoost,
gradient boosting, random forests, k-nearest neighbours, adap-
tive boosting, decision trees, extra trees, and Gaussian pro-
cesses.

Auto-sklearn supports 7 categories and 14 possible feature
pre-processing methods, including feature selection, kernel ap-
proximation, matrix decomposition, embedding, feature clus-
tering, polynomial feature expansion, and using a classifier for
feature selection.

B. TPOT

The so-called Tree-based Pipeline Optimization Tool
(TPOT) [7], [8] is another AutoML system. It uses genetic
programming (GP) [30] to choose the most suitable machine
learning model and hyperparameter settings for a machine
learning problem. Similar to auto-sklearn, it also searches over
machine learning methods available in SciKit-learn [24].

In contrast to auto-sklearn, TPOT allows the use of many
copies of a given dataset, which means pre-processing methods
can work in parallel, and their results can be combined later.
By default, the pipeline with the highest accuracy is selected as
the final solution returned by TPOT. TPOT can also consider
both model complexity and accuracy as optimization objec-
tives, using the NSGA-II selection strategy [31] for selecting
candidate configurations for each subsequent generation of the
genetic programming process.

The flexibility of TPOT allows for creating machine learn-
ing pipelines with any combination of components from
SciKit-learn. This, however, can result in invalid pipelines,
since there are no constraints on the types of components
that are combined into a given pipeline. As a result, resources
might be wasted for generating and evaluating invalid pipelines
[32].

Similar to other AutoML systems, TPOT is designed for
supervised learning tasks. For classification tasks, TPOT sup-
ports decision trees, random forests, gradient boosting, logis-
tic regression, k-nearest neighbours and support vector ma-
chines. For regression tasks, TPOT covers extra trees, gradient
boosting, adaptive boosting, decision trees, XGBoost, random
forests, linear SVR, decision trees and k-nearest neighbours.

Furthermore, TPOT supports 2 pre-processors for scaling
features: 1) by using the sample mean and variance; 2) by
using the sample median and inter-quartile range. Polynomial
combinations of numerical features are used to generate ad-
ditional features. TPOT supports decomposition and uses a
variant of principal component analysis. For feature selection,
TPOT uses recursive feature elimination strategy, which in-
cludes 3 strategies: 1) selecting the top k features; 2) selecting
the top n percentile of features; 3) discarding the features that
do not satisfy a minimum variance threshold.

TPOT combines all pipeline components into a tree struc-
ture, such that every component is a node in the tree. It begins
with one or more copies of the input dataset as the leaves
of the tree, then the dataset will be as input for four classes
of pipeline components (pre-processor, decomposition, feature
selection, or model). When optimizing the pipelines, TPOT
evolves these tree structures (i.e., the pipeline components and
their hyperparameters) to maximize accuracy.

IV. EXPERIMENTAL SETUP AND DATASETS

In this section, we present our experimental setup and the
details of the benchmark datasets that we used.

Experimental setup details: In the experiments, version
0.5.2 of auto-sklearn and version 0.9 of TPOT are used. Each
experiment is executed on 8 cores of an Intel Xeon E5-2683
CPU (2.10 GHz) with 10 GB RAM. The time limit for the
evaluation of a model is set to 20 minutes for both auto-sklearn
and TPOT. Furthermore, MAE is used as performance metric
in the optimization. The maximum ensemble size, which is
the maximum number of models allowed in the constructed
ensemble, is set to the default value of 50 in auto-sklearn. In
TPOT, the population size is set to 20, because the default
population size of 100 resulted in crashes due to out-of-
memory errors. The mutation rate and crossover rate in TPOT
are set to the default values of 0.9 and 0.1, respectively.
Since experiments are extremely time-consuming, we use
the following bootstrapping protocol to study variability over
multiple replicates of each experiment. We run each AutoML
system 30 times per data set, then we randomly select 5 out of
the 30 results thus obtained and determine the best of these 5
results, i.e., the lowest MAE on training data as the final result.
This is done 100 times per AutoML system and data set, and
statistics are computed over these distributions of results.

It has to be noted that for the experiments an internal
constant WORST POSSIBLE RESULT of auto-sklearn is
changed from the default value of 1.0 to 2147483647.0. The
constant represents the score assigned by SMAC to models
that cannot be evaluated due to timeouts or memory errors; it



Feb
2016

Mar Apr May Jun

Date

0

200

400

600

800

1000

Co
ns

um
pt

io
n 

(W
h)

Energy use of appliances data

Fig. 3. Energy use of appliances data.

12
Jan

2016

13 14 15 16 17 18

Date

0

250

500

750

1000

Co
ns

um
pt

io
n 

(W
h)

One week data of energy use of appliances data

Fig. 4. One week data of energy use of appliances data.

has to be large in order to steer the automated configuration
process away from such models.

Datasets used: The following datasets are used in our
experiments:

1) Appliances Consumption Data: The first benchmark
dataset we use is a publicly available dataset from the UCI
repository [33], [34]. The dataset is made available by Can-
danedo et al. [35], who discuss the use of data-driven models
for predicting the energy usage of appliances in a household.

The data set is sampled at 10-minute intervals for a duration
of about 4.5 months. A ZigBee wireless sensor network [36]
was used to monitor the house temperature and humidity.
Each wireless node recorded temperature and humidity condi-
tions every 3.3 minutes, and the temperature and humidity
conditions data was averaged over periods of 10 minutes.
The energy data was recorded every 10 minutes with m-bus
energy meters. Weather information from the airport weather
station (Chievres Airport, Belgium) was retrieved from the
Reliable Prognosis data set (rp5.ru) [35], and merged together
with the energy data based on time stamps. Two random
variables are included in the data set for testing the regression
models. Figures 3 and 4 show the energy consumption of the
appliances.

2) Honda Real World Data: The second benchmark dataset
is the electricity consumption of an office building of Honda
R&D with around 200 employees. The data contains loads

2017-10
2017-12

2018-02
2018-04

2018-06
2018-08

2018-10

Date

150

200

250

300

350

Co
ns

um
pt

io
n 

(k
W

)

Honda real world consumption data
training data
testing data

Fig. 5. Honda real world consumption data.

09
Oct

2017

10 11 12 13 14 15 16

Date

150

200

250

300

Co
ns

um
pt

io
n 

(k
W

)

One week data of Honda real world consumption data

Fig. 6. One week data of Honda real world consumption data.

and subloads measured with about 40 energy meters, as well
as data measured via a weather station. The resolution of the
data is 15 minutes, and it covers a period from October 2017
to September 2018. Figures 5 and IV-2 show a part of the
measured energy consumption, which we want to forecast in
the experiments. We use data from 01-10-2017 to 14-07-2018
as training set, and data from 15-07-2018 to 19-09-2018 as
testing set.

V. RESULTS

In this section, we present our experimental results. We
have two primary goals in performing these experiments:
Firstly, to compare the performance of AutoML systems
against manually configured models previously proposed for
energy consumption forecasting, and secondly, to compare
the performance of two currently available AutoML systems
for this purpose, namely auto-sklearn and TPOT. Related
to the first goal, we reproduce results previously obtained
on two available datasets and compare these results with
those obtained by auto-sklearn and TPOT. Related to the
second goal, we compare the performance of auto-sklearn and
TPOT under different conditions and using different resources,
namely different validation techniques and different training
time. Performance of the resulting models is compared using



TABLE I
EXPERIMENTAL RESULTS ON APPLIANCE CONSUMPTION DATASET.

Model RMSE MAE (Wh) MAPE%
LM [35] 93.18 51.97 59.93

SVM Radial [35] 70.74 31.36 29.76
GBM [35] 66.65 35.22 38.29

RF [35] 68.48 31.85 31.39
auto-sklearn1 67.80± 0.70 29.22± 0.48 26.42± 0.61
auto-sklearn2 67.01± 0.39 28.55± 0.28 25.14± 0.43
auto-sklearn3 68.99± 1.00 29.59± 0.45 26.30± 0.52
auto-sklearn5 65.37± 0.45 27.93± 0.45 24.57± 0.77

TPOT1 65.12± 1.88 28.11± 0.77 25.68± 0.79
TPOT2 65.70± 1.08 27.97± 0.70 25.26± 0.88
TPOT3 64.89± 0.92 27.31± 0.50 25.16± 0.65
TPOT5 64.23± 0.51 27.29± 0.17 24.58± 0.46

the mean absolution error (MAE) metric, as this is a metric
often used in load forecasting problems. The same metric is
also used as the optimization objective for AutoML. This
means that we try to automatically find the model or ML
pipeline that can reach the lowest MAE. We also compare
root mean square error (RMSE) and mean absolute percentage
error (MAPE).

A. Comparing AutoML Against Manually Configured Models

Appliance consumption data benchmark: In order to
compare the performance of AutoML systems against man-
ually configured models, we reproduce the experiments pre-
sented in [35]. The task to be achieved in this benchmark
scenario is to forecast the energy consumption of a house.
The authors of [35] have tried all the possible combinations
of models and hyperparameters to find the best configuration
for a number of model classes, including linear regression,
support vector machines with radial kernel, random forests
and gradient boosting machines. During the training phase,
the model performance was evaluated on the validation data
sets from a 10-fold cross validation approach.

The best model (SVM Radial) resulted in an MAE of 31.36
MAE and MAPE of 29.76 % on the test data set.

In Table I, we present the results from [35] for LM (linear
regression), SVM Radial (support vector machine with radial
kernel), GBM (gradient boosting machine) and RF (random
forest) and our results obtained with auto-sklearn and TPOT.

Auto-sklearn1, 2, 3, 5 and TPOT1, 2, 3, 5 each represent
the final results obtained by auto-sklearn and TPOT with
time budgets ranging from 1 to 5 hours. We used the default
validation technique setting of auto-sklearn (hold-out) for both
auto-sklearn and TPOT in our experiments. We used exactly
the same training and testing data as in [35], which was
made available by the authors [34]. We use the bootstrapping
protocol outlined in Section IV to create distributions of
results, and the table provides the mean and standard deviation
values for these distributions.

Looking at Table I, we observe that auto-sklearn and TPOT
both work well on this dataset and beat the baseline. The
AutoML methods are able to find an accurate model in one

TABLE II
EXPERIMENTAL RESULTS ON HONDA REAL WORLD DATASET.

Model RMSE MAE (kW) MAPE%
XGBoost+PA-1 11.40± 0.02 8.45± 0.01 4.35± 0.01
auto-sklearn1 14.35± 0.05 11.13± 0.03 5.33± 0.01
auto-sklearn2 16.29± 1.26 12.42± 0.96 5.68± 0.35
auto-sklearn3 16.79± 2.02 12.78± 1.56 5.84± 0.59
auto-sklearn5 14.52± 1.20 11.29± 1.08 5.40± 0.45

TPOT1 14.47± 0.41 11.13± 0.49 5.29± 0.29
TPOT2 14.32± 0.41 11.05± 0.33 5.30± 0.17
TPOT3 13.81± 0.47 10.56± 0.47 5.03± 0.27
TPOT5 13.73± 0.38 10.48± 0.31 4.99± 0.16

hour, which beats the baseline in terms of MAE and MAPE.
Auto-sklearn achieves 29.22 MAE and 26.42 % MAPE and
TPOT results in 28.11 MAE and 25.68 % MAPE on the test
data set, which is better than the baseline. As expected, when
given more time, the AutoML techniques produce better
results. After 5 hours, auto-sklearn and TPOT both show
better performance than the baseline w.r.t. all error metrics,
i.e., auto-sklearn achieves 65.37 RMSE, 27.93 MAE and
24.57 % MAPE, TPOT achieves 64.23 RMSE, 27.29 MAE
and 24.58 % MAPE.

Honda real-world dataset benchmark: The task to be
achieved in this benchmark experiment is the daily forecast
(meaning the forecast of the 96 values of the next day) of the
sum of the loads measured by two sensors, which corresponds
to about half of the total load. As inputs, historical data of
all energy meters can be used, in addition to weather data
of the day to be forecast. This task was investigated in a 6-
month project in 2018 by a machine learning expert at the
Honda Research Institute EU. The best results were obtained
with an ensemble of XGBoost and PA-1. This setting serves
as baseline in the following experiments. PA-1 is an online
learning model, which is not available in auto-sklearn or
TPOT. We note that current AutoML techniques do not (yet)
include any online learning models. At Honda R&D Europe,
power consumption differs markedly between weekdays and
weekends. To make a distinction between the days of week,
the values 0 and 1, representing weekdays and weekends,
respectively, are used as input to the model. We optimize a
single pipeline for both weekdays and weekends. We use the
load and two subloads from the previous day, the time step
within the day to predict, the temperature at this time step,
and the weekday flag as input data for the pipeline, and the
load at the time step to predict as target variable.

In this experiment, we use hold-out validation (train-
ing:testing = 67:33). We use the previously described boot-
strapping protocol to create distributions, and Table II again
provides the mean and standard deviations of the distributions
thus obtained. We observe from the results shown in Table II
that neither TPOT nor auto-sklearn is able to beat the baseline
for this dataset within 5 hours. However, while that baseline
has been established by human experts over a 6-month project,
the AutoML methods we evaluated find a model that comes



1 hour 2 hours 3 hours 5 hours
Training Time

27

28

29

30

31

32

33

34

M
AE

 (W
h)

Different training time on energy use appliance consumption data
Type

TPOT
AutoSklearn

Fig. 7. Testing error on energy use appliance consumption data with different
training time.

close in terms of prediction within just a few hours.

B. Comparing auto-sklearn and TPOT

In this section, we continue experiments by comparing
auto-sklearn and TPOT under different conditions and using
different resources. First, we compare the error achieved by
auto-sklearn and TPOT for different time budgets. Then we
compare the error achieved by auto-sklearn and TPOT using
different validation techniques. The reason why these factors
are relevant are as follows: 1) Longer training time may
allow AutoML to explore more of the configuration space.
Investigating this, we want to see how fast AutoML produces
high-quality models. 2) An known problem in AutoML is
overfitting [37]. To explore the degree to which this problem
arises in the context of our study, we compare the error of
hold-out versus cross validation and investigate if this choice
has any influence on the testing error.

1) Comparison of error metrics optimized by auto-sklearn
and TPOT with different training time: In this experiment, we
optimize ML pipelines with different time limits from 1 hour
to 5 hours and compare the results. The results are presented
in Figures 7 and 8. In these figures we compare the testing
error on appliance consumption data and Honda real-world
data, respectively. The results present performance obtained
for different amounts of training time. In these experiments,
we use hold-out validation (training:testing = 67:33) for both
auto-sklearn and TPOT. In case of the appliance consumption
data as well as the Honda real-world data, TPOT generally
finds better models (w.r.t. MAE) than auto-sklearn. We also
note that the performance of TPOT improves when the time
budget is increased, while this trend does not generally hold
for auto-sklearn.

2) Comparison of error metrics achieved by auto-sklearn
and TPOT using different validation techniques: In this sec-
tion, we compare the performance of auto-sklearn and TPOT
using two different validation technique, hold-out and cross-
validation. The results are presented in Figures 9 and 10.
Since training time can also be variable, we have performed

1 hour 2 hours 3 hours 5 hours
Training Time

10

15

20

25

30

M
AE

 (k
W

)

Different training time on Honda real world data
Type

TPOT
AutoSklearn

Fig. 8. Testing error on Honda real world data with different training time.

holdout 10cv

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

M
AE

 (W
h)

1 hour

holdout 10cv
Validation Technique

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

2 hours

Type
TPOT
auto-sklearn

holdout 10cv

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

3 hours
Comparison of Validation Technique on appliance consumption data

Fig. 9. Testing error with hold-out VS 10 fold cross validation on energy use
of appliance consumption data.

experiments using different amounts of training time, ranging
from 1 hour to 3 hours. Each graph compares results achieved
by cross-validation versus hold-out for a given dataset and a
given amount of training time.

In Figure 9, we compare the testing error on the appli-
ance consumption dataset for different amount of training
time, using hold-out (training:testing = 67:33) and 10-fold
cross-validation. We find that TPOT performs very different
from auto-sklearn when using a different validation technique.
When we use hold-out as validation technique, TPOT always
yields relatively good and stable results and a lower error than
auto-sklearn. However, when we use 10-fold cross-validation
as validation technique, the mean as well as standard deviation
obtained by TPOT are significantly larger than with hold-out.

In Figure 10, we compare testing error on the Honda
real-world dataset for different training time budgets and
different validation techniques. Again, the hold-out validation
(training:testing = 67:33) and 10 fold cross-validation are
compared for the different training times. As can be seen



holdout 10cv
10

15

20

25

30

M
AE

 (k
W

)
1 hour

holdout 10cv
Validation Technique

10

15

20

25

30

2 hours
TPOT
AutoSklearn

holdout 10cv
10

15

20

25

30

3 hours
Comparison of Validation Technique on Honda real world data

Fig. 10. Testing error with hold-out VS 10 fold cross validation on Honda
real world data.

in the figure, TPOT yields lower error than auto-sklearn. In
most of the settings, using hold-out validation shows good
results for TPOT, while for auto-sklearn we do not see this
tendency. The default validation technique of TPOT is cross-
validation; by changing this to hold-out validation, results of
better or equal quality are obtained. We also found that with
the same computational resources, 10-fold cross-validation
shows higher variance than hold-out, and hence produces less
stable results.

VI. CONCLUSIONS

In this work, we investigated the use of AutoML methods
for performing load forecasting tasks on two real world
datasets. We compared the results achieved by two freely
available, state-of-the-art AutoML systems, auto-sklearn with
default parameter settings, and TPOT with a minor change,
against manually selected models proposed before for the
same problem. We found that, using the same computational
resources, hold-out validation within the AutoML process
tends to produce more stable results than cross-validation.
Both AutoML methods show an advantage over the baseline
results [35] for the appliance consumption dataset. For the
Honda real world data set, AutoML also provides promising
results, achieving a performance close to a sophisticated,
expert-designed forecasting system. The AutoML systems
used in our study are open source and extensible.

Overall, our results clearly indicate that AutoML can sub-
stantially reduce the effort involved in building good predictive
models for energy consumption forecasting tasks, while also
achieving improved accuracy. Therefore, the use of AutoML
provides an attractive way for power utilities to improve their
load forecasting frameworks. In future work, we plan to extend
the use of AutoML systems in this domain to multi-output-
models and to online learning approaches.

ACKNOWLEDGMENT

This work is part of the research programme C2DHorizontal
Data Science for Evolving Content, under the DACCOM-
PLI project (project number 628.011.002), which is partly
financed by the Netherlands Organisation for Scientific Re-
search (NWO).

REFERENCES

[1] T. Hong and S. Fan, “Probabilistic electric load forecasting:
A tutorial review,” International Journal of Forecasting,
vol. 32, no. 3, pp. 914–938, 2016. [Online]. Available:
https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:3:p:914-
938

[2] A. K. Srivastava, A. S. Pandey, and D. Singh, “Short-term load
forecasting methods: A review,” in 2016 International Conference on
Emerging Trends in Electrical Electronics Sustainable Energy Systems
(ICETEESES), March 2016, pp. 130–138.

[3] A. Baliyan, K. Gaurav, and S. K. Mishra, “A review
of short term load forecasting using artificial neural
network models,” Procedia Computer Science, vol. 48, pp.
121 – 125, 2015, international Conference on Computer,
Communication and Convergence (ICCC 2015). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915006699

[4] I. Staffell and M. Rustomji, “Maximising the value
of electricity storage,” Journal of Energy Storage,
vol. 8, pp. 212 – 225, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352152X1630113X

[5] H. K. Alfares and M. Nazeeruddin, “Electric load forecasting: Literature
survey and classification of methods,” Int. J. Systems Science, vol. 33,
pp. 23–34, 2002.

[6] M. Blum, M. Feurer, A. Klein, J. Springenberg, F. Hutter,
and K. Eggensperger, “Efficient and robust automated machine
learning,” in NIPS, 2015, Publication, pp. 2962–2970. [On-
line]. Available: http://papers.nips.cc/paper/5872-efficient-and-robust-
automated-machine-learning

[7] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference
2016, ser. GECCO ’16. New York, NY, USA: ACM, 2016, pp. 485–
492. [Online]. Available: http://doi.acm.org/10.1145/2908812.2908918

[8] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C.
Kidd, and J. H. Moore, Applications of Evolutionary Computation: 19th
European Conference, EvoApplications 2016, Porto, Portugal, March 30
– April 1, 2016, Proceedings, Part I. Springer International Publishing,
2016, ch. Automating Biomedical Data Science Through Tree-Based
Pipeline Optimization, pp. 123–137.

[9] A. Bracale, G. Carpinelli, P. D. Falco, and T. Hong, “Short-term
industrial load forecasting: A case study in an italian factory,” in 2017
IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), Sept 2017, pp. 1–6.

[10] P. Wang, B. Liu, and T. Hong, “Electric load forecasting with
recency effect: A big data approach,” International Journal of
Forecasting, vol. 32, no. 3, pp. 585–597, 2016. [Online]. Available:
https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:3:p:585-
597

[11] R. Nedellec, J. Cugliari, and Y. Goude, “Gefcom2012:
Electric load forecasting and backcasting with semi-
parametric models,” International Journal of Forecasting,
vol. 30, no. 2, pp. 375–381, 2014. [Online]. Available:
https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:2:p:375-
381

[12] Y. Goude, R. Nedellec, and N. Kong, “Local short and middle term
electricity load forecasting with semi-parametric additive models,” IEEE
Transactions on Smart Grid, vol. 5, no. 1, pp. 440–446, Jan 2014.

[13] G. T. Wilson, “Time series analysis: Forecasting and control, 5th
edition, by george e. p. box, gwilym m. jenkins, gregory c. reinsel and
greta m. ljung, 2015. published by john wiley and sons inc., hoboken,
new jersey, pp. 712. isbn: 978-1-118-67502-1,” Journal of Time Series
Analysis, vol. 37, no. 5, pp. 709–711, 2016. [Online]. Available:
https://EconPapers.repec.org/RePEc:bla:jtsera:v:37:y:2016:i:5:p:709-
711



[14] T. Hong, P. Pinson, and S. Fan, “Global energy forecasting
competition 2012,” International Journal of Forecasting, vol. 30,
no. 2, pp. 357 – 363, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169207013000745

[15] P. Chen, S. Liu, C. Shi, B. Hooi, B. Wang, and X. Cheng, “Neucast:
Seasonal neural forecast of power grid time series,” in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., 2018, pp. 3315–
3321. [Online]. Available: https://doi.org/10.24963/ijcai.2018/460

[16] T. Hong and P. Wang, “Fuzzy interaction regression for short
term load forecasting,” Hugo Steinhaus Center, Wroclaw University
of Technology, HSC Research Reports HSC/13/14, 2013. [Online].
Available: https://EconPapers.repec.org/RePEc:wuu:wpaper:hsc1314

[17] H. Nie, G. Liu, X. Liu, and Y. Wang, “Hybrid of arima
and svms for short-term load forecasting,” Energy Procedia,
vol. 16, pp. 1455 – 1460, 2012, 2012 International Conference
on Future Energy, Environment, and Materials. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1876610212002391

[18] J. R. Lloyd, “Gefcom2012 hierarchical load forecasting: Gradient
boosting machines and gaussian processes,” International Journal of
Forecasting, vol. 30, no. 2, pp. 369–374, 2014. [Online]. Available:
https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:2:p:369-
374

[19] B. Zoph, V. Vasudevan, J. Shlens, and Q. Le, “Automl for large
scale image classification and object detection,” Available: go. iec.
ch/wpai067.[Accessed: 14 September 2018]. Notes Notes Notes Notes
International Electrotechnical Commission T, vol. 41, no. 22, p. 919,
2017.

[20] S. Mahpod and Y. Keller, “Auto-ml deep learning for rashi scripts ocr,”
arXiv preprint arXiv:1811.01290, 2018.

[21] F. Ahlgren and M. Thern, “Auto machine learning for predicting ship
fuel consumption,” in ECOS 2018-the 31st International Conference on
Efficiency, Cost, Optimization, Simulation and Environmental Impact of
Energy Systems, 2018.

[22] E. Barreiro, C. R. Munteanu, M. Cruz-Monteagudo, A. Pazos, and
H. González-Dı́az, “Net-net auto machine learning (automl) prediction
of complex ecosystems,” Scientific reports, vol. 8, no. 1, p. 12340, 2018.

[23] S. Theodoridis, Machine Learning: A Bayesian and Optimization Per-
spective, 1st ed. Orlando, FL, USA: Academic Press, Inc., 2015.

[24] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
2013, pp. 108–122.

[25] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Proceedings of the
5th International Conference on Learning and Intelligent Optimization,
ser. LION’05. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 507–523.

[26] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’13.
New York, NY, USA: ACM, 2013, pp. 847–855. [Online]. Available:
http://doi.acm.org/10.1145/2487575.2487629

[27] I. Guyon, A. Saffari, G. Dror, and G. Cawley, “Model
selection: Beyond the bayesian/frequentist divide,” J. Mach.
Learn. Res., vol. 11, pp. 61–87, Mar. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1756006.1756009

[28] A. Lacoste, M. Marchand, F. Laviolette, and H. Larochelle, “Agnostic
bayesian learning of ensembles,” in Proceedings of the 31st
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, E. P. Xing and T. Jebara, Eds., vol. 32,
no. 1. Bejing, China: PMLR, 22–24 Jun 2014, pp. 611–619. [Online].
Available: http://proceedings.mlr.press/v32/lacoste14.html

[29] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes, “Ensemble
selection from libraries of models,” in Proceedings of the Twenty-first
International Conference on Machine Learning, ser. ICML ’04.
New York, NY, USA: ACM, 2004, pp. 18–. [Online]. Available:
http://doi.acm.org/10.1145/1015330.1015432

[30] J. R. Koza, “Genetic programming as a means for programming
computers by natural selection,” Statistics and Computing,
vol. 4, no. 2, pp. 87–112, Jun 1994. [Online]. Available:
https://doi.org/10.1007/BF00175355

[31] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002. [Online]. Available:
https://doi.org/10.1109/4235.996017

[32] A. G. C. de Sá, W. J. G. S. Pinto, L. O. V. B. Oliveira, and G. L. Pappa,
“RECIPE: A grammar-based framework for automatically evolving
classification pipelines,” in EuroGP, ser. Lecture Notes in Computer
Science, vol. 10196, 2017, pp. 246–261.

[33] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[34] L. M. Candanedo, “Data driven prediction models of energy use of appli-
ances in a low-energy house,” https://github.com/LuisM78/Appliances-
energy-prediction-data, 2017.

[35] L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven
prediction models of energy use of appliances in a low-energy house,”
Energy and Buildings, vol. 140, pp. 81 – 97, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378778816308970

[36] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu,
“Wireless sensor networks: A survey on the state of the art and the
802.15. 4 and zigbee standards,” Computer communications, vol. 30,
no. 7, pp. 1655–1695, 2007.

[37] F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automatic Machine
Learning: Methods, Systems, Challenges. Springer, 2018, in press,
available at http://automl.org/book.


